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J .  Phys. A: Math. Gen. 22 (1989) 4295-4302. Printed in the UK 

A classification of special points of icosahedral quasilattices 

Komajiro Niizeki 
Department of Physics, Tohoku University, Sendai 980, Japan 

Received 3 May 1989 

Abstract. We investigate special points of icosahedral quasilattices in three dimensions 
( 3 ~ ) .  They are given as the projections onto the real space of the special points of 
icosahedral lattices which are periodic lattices in 6 ~ .  There exist three Bravais classes of 
6~ icosahedral lattices and we present a complete classification of their special points. 

1. Introduction 

We have investigated in the preceding paper (Niizeki 1989b) special points of quasilat- 
tices in two dimensions ( 2 ~ ) .  The quasilattices are obtained by the cut-and-projection 
method (Janssen 1986, Niizeki 1988a) from 4~ periodic lattices, i.e. octagonal, 
decagonal and dodecagonal lattices, and the special points of the quasilattices are 
obtained with the same method from those of the starting periodic lattices. We have 
presented a complete classification of the special points of these periodic lattices. The 
results are applied to classifications of local and global point symmetries of the relevant 
2~ quasilattices. 

On the other hand, we have shown in Niizeki and Akamatsu (1989) (to be referred 
to as I )  that the special points in the reciprocal space of a 3~ icosahedral quasilattice 
(IQL) are useful in understanding the properties of the electronic wavefunctions in the 
‘plane-wave representation’; the quasi-dispersion relation of electron in the IQL is 
stationary at the special points as in the case of a periodic lattice. 

IQL are obtained generally with the cut-and-projection method from 6~ periodic 
lattices whose point symmetries are isomorphic to Yh ( 5 j m ) ,  the full icosahedral point 
group in 3~ (Elser 1986, Janssen 1986, Katz and Duneau 1986). There exist three 6~ 

icosahedral lattices, PSjm,  F S j m  and I 5 j m ,  and they give rise to three Bravais classes 
of I Q L  (Janssen 1986, Rokhsar et al 1987, Levitov and Rhyner 1988). 

The special points of IQL are obtained with the cut-and-projection method from 
those of the starting lattices in 6 ~ .  We have treated only PJTm in I .  We shall restrict 
our arguments to the cases where the space groups of the 6~ lattices are symmorphic 
and their point groups are isomorphic to Y h .  

In 0 2,  we introduce the three 6~ icosahedral lattices and present their relationships 
to IQL. In 0 3, we present a general theory of the special points of a (periodic) Bravais 
lattice with a symmorphic space group. In § 4, we shall classify the special points of 
the 6~ lattices and, in 0 5, discuss related subjects. 

2. The 6~ icosahedral lattices and 3~ icosahedral quasilattices derived from them 

A regular icosahedron 9 in E3 (=R3),  the 3~ Euclidean space, has six fivefold axes, 
ten threefold axes and fifteen twofold ones, which pass through the vertices, the face 
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centres and the middle points of the edges, respectively. 9 has inversion symmetry 
and the full point group of 9 is Y h ,  whose order is 120; JYhl = 120. 

The twelve vertices of 9 are grouped into six pairs by the inversion symmetry and 
six of the twelve vertex vectors of 9 centred at the origin of E, are linearly independent 
over Q, the rational field. We choose the Cartesian coordinate system so that the three 
axes are parallel to three twofold axes which are orthogonal to each other. By choosing 
the size of 9 appropriately, we can assume that the six independent vertex vectors are 
given by a , = ( ~ , l , O ) ,  a , = ( O , ~ , l ) ,  a , = ( l , O , ~ ) ,  a4=(T, - l ,0 ) ,  a 5 = ( 0 , ~ , - l )  and 
116 = (-1, 0, T ) ,  where T = (1 + &)/2 is the golden ratio. The two vectors, a,  + a2 + a3 
and a4+a,+a,,  are parallel to the threefold axis along (1, 1, l ) =  [ l l l ] .  Note that 
1a,1 =- for all i and a , ~ a l / ( ~ a ~ ~ ~ a l ~ )  ( i # j )  takes l /& or -l/&. An element of 
Y h  permutes the a, among themselves and, subsequently, inverts some of them. 

The algebraic conjugate of T is given by i = (1 - d ) / 2  ( = -1/ 7) .  Let us define the 
conjugate vectors to a, by a", = -TU, 1 T+i. Then, a"[ are vertex vectors of another icosahe- 
dron, 6, which differs from 9 only in its orientation in E, ; a", a") = -a,  * al ( i  Zj). We 
shall call 6 the conjugate of 9. 

which 
is another 3~ Euclidean space, orthogonal to E,. Let E,= E 3 @ g 3  and E ,  = ( a , ,  a",) ,  
i =  1-6. Then, we obtain E , *  E , = U ~ S ~  with a =-. Therefore, Lp=  
{ n l e l  + n2&2 + . . . + 1 n, E Z }  is a simple hypercubic lattice in 6 ~ .  We shall sometimes 
denote I = n l ~ l  +. . . + n6&6 E Lp as I = [ n 1 n 2 .  . . n,] with the n, being the indices of 1. 

The point group of Lp is R(6), the 6~ hyperoctahedral point group. a ( 6 )  is given 
by a semidirect product of the symmetric group S(6) consisting of all the permutations 
among the E ,  and an Abelian mirror group generated by the six mirrors, each of which 
inverts one of the E , .  It follows that IfL(6)I = 6!26 = 46 080. The maximal subgroup of 
R(6) among those which leave E, ( ~ 6 6 )  invariant is YA, the 6~ icosahedral group, 
which is isomorphic to Y h  ; Yh is the restriction of YL onto E, and the action of (T'E YL 
on E ,  is the same as the action of the corresponding element U E Y h  on a,. The E ,  are 
basis vectors of a 6~ unimodular representation of yh  (=YA) .  E3 is also an invariant 
subspace against YA. qh, the restriction of YA onto &, is isomorphic to Yh .  We shall 
denote the projectors from E6 onto E3 (or E3)  by L~T (or 4). Then, ~ ( [ n ~ . .  . nb])  = 

A 6~ periodic lattice is called an icosahedral lattice if its point group is equal to 
Yi .  Though Lp has a larger point symmetry than Y i ,  we can consider it to be a special 
icosahedral lattice. A more general icosahedral lattice is formed with basis vectors 
( a z ,  ca",), i = 1-6, where c( # 0) is an arbitary constant. 

If a, are scaled up through the ratio T,  the resulting vectors are rationally related 
to a, as 

We can consider, alternatively, that 6 is contained in the conjugate space 

n141+. .+ n6a6 and $([n1 . . . n6]) = n]a",+. . .+ n6a"s. 

T ( a l  9 a 2 ,  . . . 9 a6) = 9 a 2 ,  * * . 9 (1) 
1 1  1 1  1 - 1  
1 1  1 - 1  1 1  

(2) 
M=? 1 1 i -; i _j 1; :;I. 

-1 
-1 -1 -1 

Similarly, the a", are transformed by 7" among themselves with the same matrix M. 
Accordingly, we obtain 

T(E1, E 2 9  * * 9 &6) = 3 & 2 , .  * .  9 &6IM (3) 
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where T = diag( T,  T ,  T ,  ?, ?, ?) is a diagonal matrix in 6 ~ .  Since det T = -1, T represents 
a volume-conserving linear transformation of E,. T leaves E3 and g3 invariant. It acts 
as similarity transformations onto the two subspaces and, therefore, commutes with 
all the elements of Yk. T satisfies T~ = 2 ~ +  1, so that we obtain T3 =2T+E and 
M3 = 2M + E with E being the 6~ unit matrix. It follows that M3 is a unimodular matrix 
and T3 induces an automorphism of Lp;  T3Lp = Lp (Elser 1985, Katz and Duneau 1986). 

Lp has two sublattices with the hyperoctahedral point symmetry, namely, the face 
centred hypercubic lattice LF and the body-centred lattice L, ;  LF = {[ n ,  . . . n6] I n, E 2 
and n ,  + . . . n6= 0 mod 2) and L,  = { [ n ,  . . . n6] I n, E 2 and n, are either all even or all 
odd}. Note that LF (or L,)  is a superlattice of Lp such that the unit cell is doubled 
(or 32pled). Note also that LI is a superlattice of LF. The three 6~ lattices belong to 
different Bravais classes not only as hyperoctahedral lattices but also as 6~ icosahedral 
lattices (Janssen 1986, Rokhsar et a1 1987, Levitov and Rhyner 1988). The space groups 
of the three icosahedral lattices are PSjm,  F%m and I%m. 

It is a matter of simple algebra to show the following. If 1 = [ n ,  . . . n6] E LF or L, 
then 1' =TI = [ nl . . . nk]  E LF or L I ,  respectively, so that T is an automorphism of LF 
and LI (Rokhsar er a1 1987, Levitov and Rhyner 1988). 

We can now construct 3~ icosahedral quasilattices from the 6~ icosahedral lattices 
with the cut-and-projection method. A finite domain S in 8, is called starlike if tS c S 
for V t  E (0, 1). A starlike domain is simply connected. Let W be a starlike domain in 
g3 and assume that it is invariant under T,,. Then the set of points in E, defined by 

QP(4, W ) = ( . r r ( l ) l l ~ L , a n d  7 j ( l ) ~ 4 +  W} (4) 
is an icosahedral quasilattice, where 4 E E3 is an arbitrary vector, a so-called phase 
vector. W is called a window. The local isomorphism class to which QP(4, W) belongs 
is determined by W, but is independent of 4. Therefore, we shall sometimes denote 
QP(4,  W )  simply as QP( W). QP( W) has a macroscopic point symmetry represented 
by Y h .  It has a selfsimilarity with ratio T ~ ;  Qp(j3 W) is a sublattice (subset) of QP( W) 
(because i3 W c  W) and is locally isomorphic to .'QP( W) (Katz and Duneau 1986). 

The projection of the Voronoi cell of 0 E Lp (the origin of E6) onto g3 is a rhombic 
triacontahedron F. QP(F)  is a 3~ Penrose tiling with two kinds of rhombohedrons 
(Elser 1986, Katz and Duneau 1986). 

Different icosahedral quasilattices QF( 4, W) and Q1( 4, W) are constructed from 
LF and LI by equations similar to (4). They are sublattices of QP(4,  W). QF( W') and 
Q1( W') are never locally isomorphic to QP( W) however W' is chosen. QF( W) and 
Q,( W) are selfsimilar with respect to scaling with T. 

3. A general theory of a classification of the special points of a Bravais lattice 

Let g be a d-dimensional space group and assume that it is symmorphic. Then, it is 
constructed as a semidirect product of a point group G and a translational group, 
which is identified with a Bravais lattice (a d-dimensional 2-module) L. We shall 
denote this fact as g = G * L. We assume that G includes the inversion operation Z: 

Let H be a subgroup of G. Then, we shall call H a centring (sub-)group if the 
origin is the only fixed point of Ed with respect to the action of H. The inversion 
operation Z has the origin as its only fixed point, so that a subgroup of G (including 
itself) is a centring group if it includes I .  Let H and H' be subgroups of G such that 
H c H' and assume that H is a centring group. Then, so is H'. 

ZX = -X  for QX E Ed. 
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The point group of x E Ed is defined by G(x)  = {uI u E G and u x  = x mod L}. 
Obviously, G(x)  = G ( x +  I )  for V I  E L. G(x) is nothing but the isotropy group of x 
with respect to the action of G onto the torus, T d  = E d / L  ( - R d / Z d ) ) .  

x E Ed is called a special point of L if G(x)  is a centring group. Let x, be a special 
point (of L ) .  Then, the set of all the translationally equivalent special points to x, is 
given by L(x,) = x,+ L (={A-,+ I 11 E L}) ,  so that special points can be considered in 
modulo L. 

If X,E Ed is a special point of L, we obtain that G(uxo) = uG(x,)u-’ =I. G(x,). 
Therefore, ox, is an equivalent special point to xo with respect to the space group %. 
The total number of equivalent special points (modulo L )  to xo is given by IGl/JG(x,)l, 
which we shall call the order of x,. It is obvious that every special point of L is an 
isolated point, so that the set of all the special points of L is a discrete set in Ed and 
the number of different special points (modulo L )  is finite. 

A sublattice L’ of L is called a G-superlattice of L if L‘ is a Bravais lattice and its 
point group includes G. For example, LF is a YA-superlattice of L,. Let q be the 
number of lattice points of L in a unit cell of L‘. Then, L is divided into q sublattices 
which are translationally equivalent to L‘. 

x mod L’} c G(x).  
Therefore, a special point of L‘ is always a special point of L but the converse is not 
necessarily true. If we know all the special points of L, all the special points of L’ are 
obtained from those by examining whether they are actually so. 

Let G’ be a subgroup of G. Then, G’(x) = { U  1 u E G’ and u x  = x mod L} c G(x), 
Vx E Ed.  Therefore, a special point of L with respect to the space group g’ = G’ * L is 
also a special point of L with respect to g, but the converse is not always true. All 
the special points of L with respect to g‘ are obtained from those with respect to g by 
examining them. Note, however, that two equivalent special points with respect to g 
are not necessarily equivalent with respect to 8’. 

The special points of L are divided into type I or I1 according to whether the 
relevant point groups include the inversion operation or not, respectively. The condition 
that Ix = x mod L x E Ed is equivalent to 2x = 0 mod L. Therefore, the set of all the 
type-I special points of L coincides with the half lattice, L ( H ) =  L /2  ( = { f / 2 l f  E L}) .  
The number of the lattice points of L ( H )  in a unit cell of L is equal to 2d. 

The origin of Ed is a type-I special point of L because G(0) = G. Therefore, L 
(=L(O))  is a trivial but important set of equivalent special points of L . We shall 
denote this class of special points by r, following the convention in the band-structure 
theory of solids. 

We consider here a special case where there exists a special point xo such that 
G(x,) = G but xoE L (for example, this is the case for the simple cubic lattice). Then, 
we can show easily that G(x)  = G(xo+x) VXE Ed.  Therefore, all the special points 
(modulo L )  are grouped into pairs such that each pair of special points have a common 
point symmetry and their separation is equal to xo in modulo L. It is usual that 
2x0 = 0 mod L, so that the relationship between the members of each pair is symmetric. 

All the lattice points of L ( H )  are special points of L as noted previously and, 
moreover, L is a G-superlattice of L‘H’. There can exist other Bravais lattices having 
similar properties. It can be shown generally that there exists a Bravais lattice K such 
that K includes all the special points of L and, moreover, L is a G-superlattice of K. 

Ed is divided into Voronoi cells of the lattice points of L;  the cells are translationally 
congruent with the one centred at the origin, which we shall denote as V,. V, is a 
polytope whose point symmetry is equal to G. A member of a translationally equivalent 

Let L’ be a G-superlattice of L. Then, G’(x) = {ulu E G and u x  
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set of special points is included in V,. All the special points but the r point included 
in V, are located on the boundary. Some of them coincide with the vertices of V,. 
Others may coincide with the middle points of the edges, the centres of the 2~ surfaces 
etc. In particular, the centre of a ( d  - 1)-dimensional surface of V, is a type-I special 
point, which is equal to half a lattice vector of L; the surface bisects the lattice vector 
perpendicularly. 

4. The special points of icosahedral lattices in 6~ 

In this section we shall identify Yi with Yh, so that we shall denote subgroups of YL 
by the symbols, DSdr D2,,, etc, which represent 3~ point groups. 

4.1. The case ofP33m 

The type-I special points of L ,  are the lattice points of its half lattice L(pH) and there 
are 64 different points modulo Lp.  They are classified in I as listed in part ( a )  of table 
1. The representative xo of each class of special points is so chosen that the projection 
of the main axis of G(x,) onto E3 is parallel to [ ~ l O ] ( = a ~ ) ,  [ l l l ]  or [loo] according 
as G(x,) is isomorphic to DSd, D3d or D2,,, respectively. 

Since G(x(  R ) )  = Yh with x( R )  = [ 11 11 11]/2, a pair of special points, x, and x( R )  - 
xo, have a common point symmetry. X 3  and M3 would be equivalent to each other if 
n ( 6 )  were taken to be the point group of Lp. 

Table 1. The special points of the 6D icosahedral lattices. The first row in each table lists 
symbols assigned to different classes of special points. The number suffixed to a symbol 
represents the order of the rotation whose axis coincides with the main axis of the point 
symmetry. The third row lists the number of different special points belonging to each 
class in a unit cell of the relevant lattice. The fourth row lists a representative of each 
class of special points. 

( a )  P 3 m  

point symmetry Y,, D5d D21, D 3 d  D3 ' I  D2 I ,  D 5 d  Y I1 

order 1 6 15 10 10 15 - 6 1 
representative [OOOOOOI [ ~ O O O O O I  [ ~ O O ~ O O I  [ ~ ~ ~ O O O I  [ O O O ~ ~ L I  2 2 2  [ O ~ L O ~ ~ I  2 2  2 2  [ O ~ L ~ ~ T I  2 2 2 2 2  [ ~ L L ~ ~ T I  2 2 2 2 2 2  

( b )  F 5 j m  

symbol r H N N'  M M '  P P' 

point symmetry Y,, D5d D,,, D 3 d  D 3 d  D3 '1 DSd D5d 

l o  10 -_- 10 6 6- order 1 6 15 
representative [OOOOOOI [ 10000001 [ 1001001 [ 11 10001 [if f f l  [ t  t t i l  [J  t l f  I] 
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We have mentioned in I, without any proof, that Lp has no type-I1 special points. 
We present here a proof of it. Of the centring subgroups of Y R ,  only T, D5, D3 and 
D2 do not include the inversion operation. Since T includes Dz as its subgroup, the 
proposition under consideration is true if we can prove the following lemma. 

Lemma. Let xo be a special point of L and assume that H c G(xo) with H = D5, D3 or 
D2. Then, xo E L(pH). 

ProoJ: D5, D3 and D2 have ten, six and three twofold rotations respectively. Let H be 
one of the three point groups and assume that one of the basis vectors of L p ,  say E , ,  

is given. Then, there exists a twofold rotation U of H such that U&! = - E , ,  This 
statement can be confirmed by examining each case separately. Now, let xo= 
[ h , h 2 .  . . h6] be a special point such that G(xo) 2 H. Then, we can conclude that 

0 2h, = 0 mod 2 for all i and, consequently, xo E L r ’ .  

VK’ ,  the Voronoi cell of the origin of Lp, is a 6~ hypercube whose 64 vertices are 
[h ,h , .  . . h6] where hi takes the values *;. That is, the vertices belong to class R of 
the special points of Lp.  More generally, a special point is located on the centre of a 
k-dimensional surface (a  hypercube) of VF’ if the number of zeros in the indices of 
the point is k. 

4.2. The case of F.%n 

The 64 type-I special points of LF are classified as listed in part ( b )  of table 1. The 
symbols denoting different special points are chosen in analogy to the case of the face 
centred cubic lattice. r and H form Lp ;  L p =  L,u ( x ( H ) +  LF) with x ( H )  = [lOOOOO]. 
P and P’ are located on the body centres of the lattice Lp, so that r, H, P and P’ 
form a 6~ body centred hypercubic lattice L ,  U (x( P )  + L p ) ,  which is nothing but LiH’. 
This result is consistent with the general result on the relationship between the special 
points of two lattices L and L’ satisfying L c  L‘. 

V r )  is a 6~ polytope with 76 vertices. Twelve of them belong to H and the remaining 
64 to P and P‘. A 5~ surface of VF’ is a polytope with 18 vertices; two of them belong 
to H and the remaining sixteen to P and P‘. VdF’ has 60 equivalent SD surfaces whose 
centres belong to N and N‘. 

We will consider here whether LF has any type-I1 special point. Since L F c  Lp, 
special points of LF are those of L p .  The type-I special points of LF are, indeed, 
special points of L,. The point symmetries of other special points of Lp are D5d and 
D3d, whosc centring subgroups without the inversion operation are D5 and D3, respec- 
tively. Let xo be a special point of Lp and assume that it belongs to, say, X 5 .  Then, 
it is shown easily that uxo - xo is indexed with six integers which sum to an odd integer, 
where U is any twofold rotation in G(xo) (=D5). Therefore, xo cannot be a special 
point of LF. By similar arguments, we can show that M,,  X 3  and M3 of L p  cannot 
be type-I1 special points of LF. 

4.3. The case of I3jm 

Since L,  = (2Lp) U ([ 11 11 111 + 2Lp), we obtain LiH’ = Lp U Lf, with Lf ,  = 
[111111]/2+ Lp.  Therefore, 32 type-I special points of L,  form L p  and have indices 
with integers only. On the other hand, the remaining 32 type-1 special points have 
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indices with half-integers only. The former (or latter) 32 special points are classified 
into four classes as presented in the first (or last) four columns in part (c )  of table 1. 
The last four classes would be equivalent if R(6)  were taken to be the point group 
of L, .  

r and fifteen X 2  of L I  form LF, which is a Yh-superlattice of L,. 
Since L l c  L F ,  special points of L,  are obtained from those of L F .  The question 

here is whether the special points N, N’,  M and M‘ in part ( b )  of table 1 are type-I1 
special points of L I .  If the answer is affirmative the relevant point symmetry is D2 
( c D 2 h ) .  Let us assume that X,E E6 belongs to, say, N in part ( b )  of table 1. Then, 
we can show easily that ux, - x, with u E D2 is indexed with integers including both 
even and odd ones. Therefore, x, is not a special point of L, .  By similar arguments, 
we can conclude that L I  have no type-I1 special points. 

V t ’  is a 6~ polytope with 160 vertices and 7 6  5~ surfaces. The vertices belong to 
X,.  The centres of twelve 5~ hypersurfaces belong to X ,  and the remaining 64 to L,, 
Lj,  L ,  and L;. 

5. Discussions 

The 4~ decagonal and dodecagonal lattices investigated in Niizeki (1989b) have type-I1 
special points. Furthermore, the P- (or W-) point of the face- (or body-) centred cubic 
lattice is also a type-I1 special point. Therefore, the present results that the three 
icosahedral lattices have no type-II special points are by no means obvious a priori, 
and we have presented proofs of  them. 

Let L be one of the three icosahedral lattices L p ,  LF and LI  and let Q( W )  be the 
icosahedral quasilattice obtained from L with window W. Then, Q( W) is a discrete 
subset of .ir(L), which is a dense set in E,. Let L [ X ]  be the set of all the special 
points of L belonging to class X.  Then, . r r (L[X])  is also a dense set. If a discrete 
subset of T (  L [ X ] )  is chosen appropriately, each point of the set represents the centre 
of a common local structure of Q( W) with point symmetry G ( X )  (Niizeki 1989b). 

For example, the body centre of a rhombohedron in 3~ Penrose tiling QP(F) 
belongs to .ir( L p [ X , ] )  or n-( Lp[ M,])  depending on whether the rhombohedral angle 
is acute or obtuse, respectively. Similarly, the centre of a face of a rhombohedron 
belongs to . ir(LP[X2]).  QP(Y) has the local structures of a rhombic icosahedron 
composed of two prolate rhombohedra and two oblate ones (Elser and Henley 1985, 
Henley 1986). It can be shown that their body centres belong io . i r (Lp[M2]) .  Note, 
however, that the configuration of the interior of every rhombic icosahedron breaks 
the point symmetry D2h (Henley 1986). We may call it a spontaneous symmetry 
breaking (Niizeki 1989b). We will not mention here the local structures associated 
with other special points of L p .  

I have not investigated yet local structures of QF( W) nor QI( W) for any W. The 
case where W = 7j( V,) with V, being the Voronoi cell of the origin will be promising; 
7j( VbF’) as well as 7j( V r ’ )  is a rhombic triacontahedron, while 7j( Vk”) is a regular 
dodecahedron. This subject awaits our intensive investigation. 

Every icosahedral quasilattice has a selfsimilarity with ratio T or 7,. The local 
structures may change on the selfsimilarity transformation though their point sym- 
metries cannot (Niizeki 1989b). This is because different classes of special points of 
L form a multiplet such that its members are permuted cyclically among themselves 
by the automorphism induced by M (or M 3  for the case of Lp). It is a matter of 
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elementary algebra to find such a multiplet, so we present only the results. is always 
a singlet. Other singlets are X , ,  M2 and R of L p ,  M' of LF and X, of L I .  L p  has two 
doublets {X,, M,} and {X3, M 3 } .  LF has two triplets { H ,  P, P'}  and { N ,  N',  M } .  LI  
has also two triplets { X ,  I L5, L;} and { X , ,  L 3 ,  Lj}.  L p  has no higher multiplets than 
the doublets because ( M 3 ) ,  = 8 M + 5 E  = E mod 2. On the other hand, M 3  = 2M + E = 
J +  E mod 2 ,  with J = 'UU where U = (1 ,1,1,1,  1 , l )  is a row vector. Therefore, LF and 
L, can have triplets because n ,  + n, +. . . + n6 = 0 mod 2 for [ n ,  n, . . . n,] E LF (or L l ) .  

The reciprocal lattice of Lp is given by L$ = LPIn.+a- with a" = 2 v / a ,  while those 
of LF and LI are by L$ = Llla-ta* and L: = LF/o.+a* with a* = v / a .  The relevant Voronoi 
cell V$ of each reciprocal lattice is the first Brillouin zone and the special points are 
high-symmetry points in the zone. On the other hand, the special points (wavevectors) 
in the reciprocal space of an icosahedral quasilattice are given by the projections of 
the special points of L$ with X = P ,  F or I onto the 3~ reciprocal space E $ .  They 
form a dense set in the reciprocal space. However, the set is practically discrete because 
special points belonging to a single class have different intensities which are determined 
by the Fourier components of the window function with respect to the conjugate 
wavevectors (see I) .  Further details of this subject will be discussed elsewhere. 

Let the 6~ space group g' be a subgroup of 9 = Yh * Lx with X = P, F or I. Then, 
special points defined with respect to g' are always special points of Lx with respect 
to g. Therefore, the former special points are all obtained from the latter by examining 
them. Accordingly, the present results will be the basis of the investigation of special 
points of other icosahedral lattices including the case of a non-symmorphic space 
group (Janssen 1986, Rokhsar er al 1988, Levitov and Rhyner 1988). 
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Note added in prooj Let C be a class of special points of an icosahedral lattice Lx with X = P, F or I. 
Then, the local structure associated with a special point of ox( W )  with W = G( Vi."') is a translate of 
r ( ( x o + L x ) n  Vi;") with X ~ E  &[Cl. 
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